Self-Avoiding Walks with Writhe
نویسندگان
چکیده
We map self-avoiding random walks with a chemical potential for writhe to the three-dimensional complex O(N) Chern-Simons theory as N → 0. We argue that at the Wilson-Fisher fixed point which characterizes normal selfavoiding walks (with radius of gyration exponent ν ≈ 0.588) a small chemical potential for writhe is irrelevant and the Chern-Simons field does not modify the monomer-monomer correlation function. For a large chemical potential the polymer collapses. PACS: 87.15.By, 36.20.-r, 64.60.Fr, 11.15.-q Corresponding author. [email protected]
منابع مشابه
The linking number and the writhe of uniform random walks and polygons in confined spaces
Random walks and polygons are used to model polymers. In this paper we consider the extension of writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the ...
متن کاملThe shapes of self-avoiding polygons with torsion
We consider self-avoiding polygons on the simple cubic lattice with a torsion fugacity. We use Monte Carlo methods to generate large samples as a function of the torsion fugacity and the number of edges in the polygon. Using these data we investigate the shapes of the polygons at large torsion fugacity and find evidence that the polygons have substantial helical character. In addition, we show ...
متن کاملSelf-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices
We study self-avoiding and neighbour-avoiding walks and lattice trails on two semiregular lattices, the (3.122) lattice and the (4.82) lattice. For the (3.122) lattice we find the exact connective constant for both self-avoiding walks, neighbour-avoiding walks and trails. For the (4.82) lattice we generate long series which permit the accurate estimation of the connective constant for self-avoi...
متن کاملPrudent Self-Avoiding Walks
We have produced extended series for prudent self-avoiding walks on the square lattice. These are subsets of self-avoiding walks. We conjecture the exact growth constant and critical exponent for the walks, and show that the (anisotropic) generating function is almost certainly not differentiably-finite.
متن کاملBallistic behavior for biased self-avoiding walks
For self-avoiding walks on the d-dimensional cubic lattice defined with a positive bias in one of the coordinate directions, it is proved that the drift in the favored direction is strictly positive. c © 2008 Elsevier B.V. All rights reserved. Keyword: Biased self-avoiding walks
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997